2,148 research outputs found

    Renormalization group improved pQCD prediction for Ξ₯(1S)\Upsilon(1S) leptonic decay

    Get PDF
    The complete next-to-next-to-next-to-leading order short-distance and bound-state QCD corrections to Ξ₯(1S)\Upsilon(1S) leptonic decay rate Ξ“(Ξ₯(1S)β†’β„“+β„“βˆ’)\Gamma(\Upsilon(1S)\to \ell^+\ell^-) has been finished by Beneke {\it et al.} \cite{Beneke:2014qea}. Based on those improvements, we present a renormalization group (RG) improved pQCD prediction for Ξ“(Ξ₯(1S)β†’β„“+β„“βˆ’)\Gamma(\Upsilon(1S)\to \ell^+\ell^-) by applying the principle of maximum conformality (PMC). The PMC is based on RG-invariance and is designed to solve the pQCD renormalization scheme and scale ambiguities. After applying the PMC, all known-type of Ξ²\beta-terms at all orders, which are controlled by the RG-equation, are resummed to determine optimal renormalization scale for its strong running coupling at each order. We then achieve a more convergent pQCD series, a scheme- independent and more accurate pQCD prediction for Ξ₯(1S)\Upsilon(1S) leptonic decay, i.e. Ξ“Ξ₯(1S)β†’e+eβˆ’βˆ£PMC=1.270βˆ’0.187+0.137\Gamma_{\Upsilon(1S) \to e^+ e^-}|_{\rm PMC} = 1.270^{+0.137}_{-0.187} keV, where the uncertainty is the squared average of the mentioned pQCD errors. This RG-improved pQCD prediction agrees with the experimental measurement within errors.Comment: 11 pages, 4 figures. Numerical results and discussions improved, references updated, to be published in JHE

    AT2019 avd: A tidal disruption event with a two-phase evolution

    Full text link
    Tidal disruption events (TDEs) can uncover the quiescent super-massive black holes (SMBHs) at the center of galaxies and also offer a promising method to study them. After the disruption of a star by a SMBH, the highly elliptical orbit of the debris stream will be gradually circularized due to the self-crossing, and then the circularized debris will form an accretion disk. The recent TDE candidate AT 2019avd has double peaks in its optical light curve, and the X-ray emerges near the second peak. The durations of the peaks are about 400 and 600 days, respectively, and the separation between them is ~ 700 days. We fit and analyse its spectral energy distribution (SED) in optical/UV, mid-infrared, and X-ray bands. We find that this source can be interpreted as the circularization process in the first phase plus the delayed accretion process in the second phase. Under this two-phase scenario, we use the succession of self-crossing circularization model to fit the first peak, and the delayed accretion model to fit the second peak. The fitting results are consistent with the partial disruption of a 0.9 M_sun star by a 7 * 10^6 M_sun SMBH with the penetration factor \beta ~ 0.6. Furthermore, we find the large-amplitude (by factors up to ~ 5) X-ray variability in AT 2019avd can be interpreted as the rigid-body precession of the misaligned disk due to the Lense-Thirring effect of a spinning SMBH, with the disk precession period of 10 - 25 days.Comment: 14 pages, 11 figures, 4 tables, Submitted to Ap
    • …
    corecore